Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474509

RESUMO

We provide promising computational (in silico) data on phytochemicals (compounds 1-10) from Arabian Peninsula medicinal plants as strong binders, targeting 3-chymotrypsin-like protease (3CLPro) and papain-like proteases (PLPro) of SARS-CoV-2. Compounds 1-10 followed the Lipinski rules of five (RO5) and ADMET analysis, exhibiting drug-like characters. Non-covalent (reversible) docking of compounds 1-10 demonstrated their binding with the catalytic dyad (CYS145 and HIS41) of 3CLPro and catalytic triad (CYS111, HIS272, and ASP286) of PLPro. Moreover, the implementation of the covalent (irreversible) docking protocol revealed that only compounds 7, 8, and 9 possess covalent warheads, which allowed the formation of the covalent bond with the catalytic dyad (CYS145) in 3CLPro and the catalytic triad (CYS111) in PLPro. Root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and radius of gyration (Rg) analysis from molecular dynamic (MD) simulations revealed that complexation between ligands (compounds 7, 8, and 9) and 3CLPro and PLPro was stable, and there was less deviation of ligands. Overall, the in silico data on the inherent properties of the above phytochemicals unravel the fact that they can act as reversible inhibitors for 3CLPro and PLPro. Moreover, compounds 7, 8, and 9 also showed their novel properties to inhibit dual targets by irreversible inhibition, indicating their effectiveness for possibly developing future drugs against SARS-CoV-2. Nonetheless, to confirm the theoretical findings here, the effectiveness of the above compounds as inhibitors of 3CLPro and PLPro warrants future investigations using suitable in vitro and in vivo tests.


Assuntos
COVID-19 , Plantas Medicinais , Peptídeo Hidrolases , Simulação de Acoplamento Molecular , SARS-CoV-2 , Papaína , Simulação de Dinâmica Molecular , Compostos Fitoquímicos , Antivirais , Inibidores de Proteases
2.
Viruses ; 15(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38005857

RESUMO

COVID-19, a disease caused by SARS-CoV-2, has caused a huge loss of human life, and the number of deaths is still continuing. Despite the lack of repurposed drugs and vaccines, the search for potential small molecules to inhibit SARS-CoV-2 is in demand. Hence, we relied on the drug-like characters of ten phytochemicals (compounds 1-10) that were previously isolated and purified by our research team from Saudi medicinal plants. We computationally evaluated the inhibition of RNA-dependent RNA polymerase (RdRp) by compounds 1-10. Non-covalent (reversible) docking of compounds 1-10 with RdRp led to the formation of a hydrogen bond with template primer nucleotides (A and U) and key amino acid residues (ASP623, LYS545, ARG555, ASN691, SER682, and ARG553) in its active pocket. Covalent (irreversible) docking revealed that compounds 7, 8, and 9 exhibited their irreversible nature of binding with CYS813, a crucial amino acid in the palm domain of RdRP. Molecular dynamic (MD) simulation analysis by RMSD, RMSF, and Rg parameters affirmed that RdRP complexes with compounds 7, 8, and 9 were stable and showed less deviation. Our data provide novel information on compounds 7, 8, and 9 that demonstrated their non-nucleoside and irreversible interaction capabilities to inhibit RdRp and shed new scaffolds as antivirals against SARS-CoV-2.


Assuntos
Antivirais , Plantas Medicinais , RNA Polimerase Dependente de RNA , SARS-CoV-2 , Aminoácidos , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Plantas Medicinais/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Arábia Saudita
3.
Zookeys ; 1178: 293-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719334

RESUMO

A new species, Leiurushadb Al-Qahtni, Al-Salem, Alqahtani & Badry, sp. nov., is described and illustrated from the Majami al-Hadb Protected Area in the Riyadh Province of Saudi Arabia. The new species is compared with species of Leiurus distributed in Saudi Arabia, especially L.arabicus Lowe, Yagmur & Kovarík, 2014. The integrated results indicate that the population found in Majami al-Hadb represents a distinct species, which is described herein. Moreover, the molecular analysis is conducted on the mitochondrial gene 16S rRNA to compare L.hadb sp. nov. with samples of L.arabicus and L.haenggii from Saudi Arabia. The analysis revealed a genetic divergence ranging from 6.0 to 12%. The combination of molecular evidence and morphological characteristics provides adequate support for recognizing the Majami al-Hadb population as a distinct species. Additionally, an identification key for the genus Leiurus found in Saudi Arabia is also provided.

4.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35409358

RESUMO

Tris (2-ethylhexyl) phosphate (TEHP) is an organophosphate flame retardant (OPFRs) which is extensively used as a plasticizer and has been detected in human body fluids. Contemporarily, toxicological studies on TEHP in human cells are very limited and there are few studies on its genotoxicity and cell death mechanism in human liver cells (HepG2). Herein, we find that HepG2 cells exposed to TEHP (100, 200, 400 µM) for 72 h reduced cell survival to 19.68%, 49.83%, 58.91% and 29.08%, 47.7% and 57.90%, measured by MTT and NRU assays. TEHP did not induce cytotoxicity at lower concentrations (5, 10, 25, 50 µM) after 24 h and 48 h of exposure. Flow cytometric analysis of TEHP-treated cells elevated intracellular reactive oxygen species (ROS), nitric oxide (NO), Ca++ influx and esterase levels, leading to mitochondrial dysfunction (ΔΨm). DNA damage analysis by comet assay showed 4.67, 9.35, 13.78-fold greater OTM values in TEHP (100, 200, 400 µM)-treated cells. Cell cycle analysis exhibited 23.1%, 29.6%, and 50.8% of cells in SubG1 apoptotic phase after TEHP (100, 200 and 400 µM) treatment. Immunofluorescence data affirmed the activation of P53, caspase 3 and 9 proteins in TEHP-treated cells. In qPCR array of 84 genes, HepG2 cells treated with TEHP (100 µM, 72 h) upregulated 10 genes and downregulated 4 genes belonging to a human cancer pathway. Our novel data categorically indicate that TEHP is an oxidative stressor and carcinogenic entity, which exaggerates mitochondrial functions to induce cyto- and genotoxicity and cell death, implying its hepatotoxic features.


Assuntos
Fosfatos , Transcriptoma , Dano ao DNA , Humanos , Fígado , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade
5.
Chemosphere ; 296: 133977, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35216979

RESUMO

Recent reports have confirmed that tris(2-butoxyethyl) phosphate (TBEP), an organophosphorous flame retardants (OPFRs), profoundly detected in the dust from solid waste (SW), e-waste dumping sites, landfills, and wastewater treatment facilities. Herein, we evaluated the hepatotoxic and carcinogenic potential of TBEP in human liver cells (HepG2). HepG2 cells exhibited cytotoxicity after 3 days of exposure, especially at greater concentrations (100-400 µM). TBEP induced severe DNA damage and cell cycle disturbances that trigger apoptosis in HepG2. TBEP treated cells showed an elevated level of esterase, nitric oxide (NO), reactive oxygen species (ROS), and influx of Ca2+ in exposed cells. Thereby, causing oxidative stress and proliferation inhibition. TBEP exposed HepG2 cells exhibited dysfunction in mitochondrial membrane potential (ΔΨm). Immunofluorescence analysis demonstrated cytoplasmic and nucleolar localization of DNA damage (P53) and apoptotic (caspase 3 and 9) proteins in HepG2 grown in the presence of TBEP for 3 days. Within the cohort of 84 genes of cancer pathway, 10 genes were upregulated and 3 genes were downregulated. The transcriptomic and toxicological data categorically emphasize that TBEP is hepatotoxic, and act as a putative carcinogenic agent. Thereby, direct or indirect ingestion of TBEP containing dusts by workers involved in handling and disposal of SW, as well as residents living nearby the disposal areas are prone to its adverse health risks.


Assuntos
Retardadores de Chama , Carcinógenos/análise , Retardadores de Chama/análise , Retardadores de Chama/toxicidade , Humanos , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade , Fosfatos/análise , Resíduos Sólidos/análise
6.
Cells ; 11(2)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-35053312

RESUMO

Tris(1,3-Dichloro-2-propyl)phosphate (TDCPP) is an organophosphorus flame retardant (OPFR) widely used in a variety of consumer products (plastics, furniture, paints, foams, and electronics). Scientific evidence has affirmed the toxicological effects of TDCPP in in vitro and in vivo test models; however, its genotoxicity and carcinogenic effects in human cells are still obscure. Herein, we present genotoxic and carcinogenic properties of TDCPP in human liver cells (HepG2). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and neutral red uptake (NRU) assays demonstrated survival reduction in HepG2 cells after 3 days of exposure at higher concentrations (100-400 µM) of TDCPP. Comet assay and flow cytometric cell cycle experiments showed DNA damage and apoptosis in HepG2 cells after 3 days of TDCPP exposure. TDCPP treatment incremented the intracellular reactive oxygen species (ROS), nitric oxide (NO), Ca2+ influx, and esterase level in exposed cells. HepG2 mitochondrial membrane potential (ΔΨm) significantly declined and cytoplasmic localization of P53, caspase 3, and caspase 9 increased after TDCPP exposure. qPCR array quantification of the human cancer pathway revealed the upregulation of 11 genes and downregulation of two genes in TDCPP-exposed HepG2 cells. Overall, this is the first study to explicitly validate the fact that TDCPP bears the genotoxic, hepatotoxic, and carcinogenic potential, which may jeopardize human health.


Assuntos
Carcinógenos/toxicidade , Retardadores de Chama/toxicidade , Fígado/patologia , Mutagênicos/toxicidade , Compostos Organofosforados/toxicidade , Cálcio/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Dano ao DNA , Esterases/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
7.
Chemosphere ; 237: 124519, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549646

RESUMO

Tricresyl phosphate (TCP) is one of the organophosphorus flame retardants (OPFRs) used as plasticizer in consumer products and mixed as a lubricant in commercial jet engine oil, reportedly induce neurotoxicity and aerodynamic syndrome. No studies have been attempted so far on TCP to induce hepatotoxicity in human cells. This study for the first time confirms the hepatotoxic potential and activation of cancer pathways in TCP treated human hepatocellular cells (HepG2). MTT and NRU data showed 39.3% and 49.85% decline in HepG2 survival when exposed to the highest concentration of TCP (400 µM) for 3 days. Comet assay showed 27.1-fold greater DNA damage in cells treated with TCP (400 µM). Flow cytometric analysis revealed an upsurge in the intracellular reactive oxygen species (ROS) and nitric oxide (NO) production in cells, affirming oxidative stress. TCP (400 µM) exposure resulted in 27% reduction in Rh123 fluorescence, indicating dysfunction of mitochondrial membrane potential (ΔΨm). Cell cycle analysis exhibited 62.53% cells in the subG1 apoptotic phase after TCP (400 µM) treatment, also a massive increase in Ca2+ influx validate the on-set of apoptosis in cells. Immunofluorescence of TCP exposed cells showed activation of p53, caspase3, caspase9 reaffirming the involvement of mitochondrial-dependent intrinsic apoptotic signaling. qPCR array of 84 genes unravel the transcriptomic alterations in HepG2 cells after TCP treatment. mRNA transcripts of ATP5A1, GADD45A, IGFBP5, SOD1, STMN1 genes were prominently upregulated providing candid evidence on TCP mediated activation of human cancer pathways to orchestrate the apoptotic death of HepG2 cells, specifying hepatotoxic potential of TCP.


Assuntos
Retardadores de Chama/toxicidade , Compostos Organofosforados/toxicidade , Apoptose/fisiologia , Ensaio Cometa , Dano ao DNA , Retardadores de Chama/metabolismo , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Estatmina , Transcriptoma , Tritolil Fosfatos
8.
Sensors (Basel) ; 15(6): 12872-83, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26043176

RESUMO

Fluorescence monitoring of endogenous microRNA (miRNA or miR) activity related to neuronal development using nano-sized materials provides crucial information on miRNA expression patterns in a noninvasive manner. In this study, we report a new method to monitor intracellular miRNA124a using quantum dot-based molecular beacon (R9-QD-miR124a beacon). The R9-QD-miR124a beacon was constructed using QDs and two probes, miR124a-targeting oligomer and arginine rich cell-penetrating peptide (R9 peptide). The miR124a-targeting oligomer contains a miR124a binging sequence and a black hole quencher 1 (BHQ1). In the absence of target miR124a, the R9-QD-miR124a beacon forms a partial duplex beacon and remained in quenched state because the BHQ1 quenches the fluorescence signal of the R9-QD-miR124a beacon. The binding of miR124a to the miR124a binding sequence of the miR124a-targeting oligomer triggered the separation of the BHQ1 quencher and subsequent signal-on of a red fluorescence signal. Moreover, enhanced cellular uptake was achieved by conjugation with the R9 peptide, which resulted in increased fluorescent signal of the R9-QD-miR124a beacons in P19 cells during neurogenesis due to the endogenous expression of miR124a.


Assuntos
Espaço Intracelular/química , MicroRNAs/análise , MicroRNAs/química , Imagem Molecular/métodos , Pontos Quânticos/química , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes , Camundongos , Neurogênese/fisiologia , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...